Example:
A tensile load of Ft = 24 kN is applied on a L = 160 mm
cylindrical rod made of steel EN8,and has a diameter d=20 mm.
Taking a factor of safety SF = 6, Find if the tensile stress on the
rod exceeds the allowable stress or not.
Also, find the increase of rod length (dL) due the tensile load,
where the steel’s modulus of elasticity E = 190 GPa.
Find the optimum design for the rod. A) Material, B) Dimensions.
Given:
Ft = 24000 N
d = 20 mm
FS = 6
E = 190 GPa
Req.:
- If σt < σall or σt > σall
- dL
Solution:
From Chart 9
σu = 620 MPa
σall = σu / SF = 620/6 = 103.33 MPa
σt =
F/A = F/(π/4
d2) = 24000/(π/4 202)
= 24000/314.16 =76.39 MPa
σt < σall (OK) OK
E = σt /ε = σt /(dL/L)
dL/L = σt / E = 76.39/190000 = 4.02 x10-4
dL = 4.02 x10-4 L = 4.02 x10-4 x 160 = 0.064 mm dL = 0.064 mm
A) Choose another material, d = 20 mm:
σall = σt = 76.39 MPa
σu = σall x SF = 76.39 x 6 = 458.34 MPa
From Chart 9 we choose steel EN3 (σu = 460) EN3
B) Change rod dimensions, (EN8):
σt = σall = 103.33 MPa
σt = Ft /A
A = Ft / σt = 24000/103.33 = 232.27 mm2
π/4 d2 = 232.27 mm2
d = SQRT(4 x 232.27 / π ) = SQRT(295.73) = 17.2 mm d = 17.2 mm